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Geophysical well logging data often show a complex pattern due to multifractal condition. Using Multifractal 
Detrended Fluctuation Analysis on the original, shuffled and surrogated series is a procedure in finding the 
source of multifractality. Fractal analysis on bulk density, sonic transmit time, acoustic impedance and neutron 
porosity of two wells from two Iranian oil fields were done. Results respectively showed similar scaling 
behavior of the long-term correlation and the broad probability distribution in result of the depositional 
environment and the strong heterogeneity over the time scale and confirmed that different layers cannot be 
introduced with the same power law exponent. 
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INTRODUCTION 

 
Self-affine fractals are characteristics which described many 
natural events like biology, physics, geology and geophysics 
(De Santis et al., 1997; Dimri, 2000; Fedi, 2003; Bansal and 
Dimri, 2005a; Moktadir et al., 2008). Self-similar fractals 
show a pattern that is similar to itself in any scale, and they 
are the general form of fractal Brownian motions (fBm) and 
fractal Guassian noises (fGn) (Turcotte, 1997; Malamud and 
Turcotte, 1999). The fBm are defined by Hurst coefficient (H) 
and show the scaling nature of the motions with the value 
between 0 and 1. Various methods like the Power Spectrum 
(PS), Roughness Length (RL), Semi-Variogram (SV), 
Wavelet Transform (WT), Spectral Density (SD) and 
Rescaled range (R/S) can estimate Hurst coefficient. 

A signal called homogeneous fractal or monofractal, 
when fBm are singular with the same Holder exponent. 
Multifractality is introduced by Mandelbrot (1974) to show 
turbulence phenomena. Later Multifractality Concept has 
been applied in very different contexts (Mandelbrot, 
1989). Multifractal signal models are positive distributions 
with self-similarity but they have non-homoge-neous 
scaling. Multifractal scaling supplies a quantitative  
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description of a broad range of heterogeneous events that 
can be distinguished between different regions, which have 
different fractal properties (Stanley and Meakin, 1988).  

Well logging data represent stochastic spatial series 
caused by sedimentation and other processes after that. 
So, the analysis of well logging data is a complex task 
and the physical property of the earth is the reason of 
multifractality in well logging data. In a multifractal 
system, any piece of the system is established by a 
distinct exponent. So, for the characterization of a 
system, a large number of such exponents are needed. 
The crust is formed from many layers with different 

characteristics and heterogeneities due to sedimentation, 
compaction, cementation, stratification, tectonic activity 
and so forth. So, one can expect different layers 
represent different environments with different distinct 
exponents. Hewett (1986) supplies the first distinct 
evidence that the porosity logs are perpendicular to the 
bedding may follow the statistics of fGn, while those 
parallel with the bedding follow fBm. The fBm and fGn 
analysis of the porosity log was considered by Hardy and 
Beier (1999), and recently by Sahimi (2011). One 
important outcome of the well logging data following the 
statistics of fBm or fGn is the existence of the long-term 
correlations. More recent research shows that densities, 
seismic velocities and elastic module of rocks may also 
follow self-affine distributions, like the fBm and fGn 



  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 1. Geological time scale and neutron porosity well log of Farour-A1.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 2. Geological time scale and neutron porosity well log of Farour-B2. 
 
 

 

(Sahimi and Tajer, 2005). 
 

 

Farour-A and Farour-B Offshore Oil Filed 

 
Well logging data used in this study, are from Farour-A 
and Farour-B offshore oil field located in Persian Gulf in 

 
 
 

 

southern part of Iran. Depth resolution or sampling 
intervals of data are 20 centimeters. The geological 
column and neutron porosity log for the Farour-A1 and 
Farour-B2 wells are respectively shown in Fig.1 and Fig. 
2. Well logging data examined in this research are four 
well logging series including bulk density (RHOB), sonic 
transmit time logs (DT), acoustic impedance (AI) 



 
 

 

 

and neutron porosity (NPHI). The bulk density represents 
the overall density of a rock, including its solid matrix and 
fluid content. The sonic transmit time log measures 
acoustic velocity of rock, and it is related to the porosity 
and the fluid content of the pores. Acoustic impedance is 
the product of density and velocity value of the rock, and 
it has an inverse relationship to porosity. Neutron porosity 
measurements use a neutron source and account fluid 
content (hydrogen index) in the porous media and 
determine the porosity. 
 

 

METHODOLOGY 

 

The research focuses on multifractality nature of well 
logging data. Thus, by analyzing the multifractality in the 
original, shuffled and surrogated well logging data, type of 
multifractality nature in the well logging data are 
distinguished. 
 

 

Monofractal and multifractal time series 

 

Multifractal analysis is currently considered as a useful 
and major tool for understanding the structure in a set of 
data (Karacan, 2009). The analysis consists of measuring 
the scaling exponents of the data. The exponents may be 
used for detection, classification and interpretation of the 
data. The scaling property for all scales a > 0 is:  

B (at ) ≡ a 
H

 B (t ) (1)  
where ≡ is an equality of finite dimensional distribution. A 
covariance analysis shows that the fBm are a 
nonstationary process, and its increment is stationary so 
it can define a generalized power spectrum with a power 

law decay by an exponent β  2H   1and  

1  β  3 (Turcotte, 1992). Thus, any individual 
 
realization of the process is a fractal curve with a fractal 
dimension D calculated by: D  2 − H . fBm realization 

is everywhere singular, i.e.,  tR  and for 0 a  1 , the 
 

following relationship is proven:  
 

 

B H  (t ) − B H  (t −   t ) 
 

≤ K 

 

t 
 

α (2) 

 

    
  

where K is a positive constant. 
 
The Lipschitz regularity of a time series at point 
 

domain in which above equation is verified. If it is a  1 at 

point t 0 , the signal is not differentiable and will 
 
characterize the singularity type. The Holder exponent of 
fBm is equal to the Hurst parameter where the following 
relationship is satisfying (MALLAT, 1998). 

H  
B H  (t ) − B H  (t − t ) t
 (3) 

 
Multifractality can be studied with two ways of the local 

and the global nature. The local nature is a local 
estimation of Lipschitz regularity, and the global nature 
consists of defining a method to estimate the global 

 
 
 

 

 

repartition of the various Holder exponents. Global 
multiscale analysis will help to show the data is 
monofractal or multifractal.  

Holder exponent represent 
 
correlation and persistent time series  and 
 
represent negative correlations and anti-persistence time 

series, while H  0.5 implies that successive increments 
of the data are random and follow a Brownian motion.  

Typically, broad probability density functions of the 
data with a fat tail and long-term correlations are the two 
factors that cause multifractality in stochastic series 
(Movahed et al., 2006, Jafari et al., 2007, Zunino et al., 
2009). By investigating the multifractality in original, 
shuffle and surrogate time series, type of multifractality is 
distinguished. It is possible to find the nature of 
multifractality caused by: (I) Non-Gaussian PDFs of the 
data and their long tails, or (II) Different long-term 
correlations of the small and large fluctuations, or (III) 
Both. In case (I) multifractality cannot be destroyed by 
shuffling the series. Moreover, h(q) of the surrogate 
series will be independent of q. In case (II) multifractality 
is removed by shuffling because it destroys all the 
correlations. Therefore, if multifractality is only due to the 
long-term correlations, in the shuffled series, h (q  2)  
0.5 , i.e. the shuffled series is monofractal. If 
 
multifractality is the results of both factors, then both the 
shuffled and surrogate series will show weaker 
multifractality than the original series. 
 

 

Shuffle and surrogate data 

 

Two procedures are needed for analyzing the nature of 
the multifractality in time series, shuffling and surrogating. 
Shuffling randomizes the order of the time series value, 
all the spatial correlations are destroyed but the 
probability density function (PDF) of it will not be affected 
by the shuffling.  
Using surrogate data in the nonlinear time series analysis 
was introduced by Theiler et al. (1992). Surrogate series 
are generated from the original time series for 
determining the effect of the broadness of PDF (non-
Gaussian PDF). The measured topological properties of 
the original time series are then compared with the 
measured topological properties of the surrogate time 
series. If both original time series and the surrogate time 
series yield the same values for the topological 
properties, the null hypothesis that the data set is random 
noise, cannot be ruled out. A distinct algorithm for 
generating this, is as follows (Mazaraki, 1997):  
1. Input the experimental time series data  

x (t j  ), j   1, ..., N into a complex array. 
 

z (n )  x (n )  iy (n ), n  1,..., N (4) 
 

where x (n )  x (t n ) and y (n )  0 . 
 
2. Construct the discrete Fourier transform. 

t 0 is the 

H 0.5 

H 0.5 

positive 
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3. Construct a set of random phases. 
                 

          s 
      

 

           

N 
                j 1           

 

 φm[0,π ], m   2, 3, ...,  
         (6) Step 4: average over all segments to obtain the qth order  

           
 

          2             fluctuation function.           
 

4. Apply  the randomized phases  to the Fourier      
2N s 

     1/q    
 

 transformed data.                 
 1        

 
    

 

                       2   q / 2  h ( q )  
 

  

 

                  

Fq (s )  
   

∑
[F

DFA m (v , s )] 
 

≈ s 
  

(12) 
 

                         
 

     

for m 1 and m  
N 
1 

     
2N

 s   v 1           
 

  

Z (m) 
      

 

  

for q   0 

                 

      
2 

                  
 

  
 

                                
 

                                      
 

  

 

 

 

 

 i φm 
           

 N  
  

1 2N s 
 

2 
 

q / 2 
 

h ( 0 ) 
 

 

                     
 

 ′ 
     

for m  1and m  2,3,...,     

∑ln[F 
    

Z (m)  Z (m)  e    

2 
 F0 (s )  exp       (v , s )] ≈ s  (13)  

  

 

                        
 

                     4N
 s v 1     

 

   
 

                             
 

  
 

 

Z (N − m  2) 
 

e 
i
 
φ

N −m2 for m  
N   2, N  3,...,N Step 5: Determine the scaling behavior of the fluctuation 

 

      
 

  

 

       
 

         
 

  

 

 

 

       

2 
  

2 
      

function by analyzing log-log plot of Fq (s ) versus s for 
 

                  
 

                         
 

(7)
 each value of q.

 

5.  Construct the inverse Fourier transform of Z (m )′ .  
For very large scales, s   N 4 , Fq (s ) becomes 

 

     

1 
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z (n )′  x (n )′  iy (n )′  ∑z m′e 
2πi ( m −1)( n −1)/ N 

(8) 
statistically unreliable because the number of segments  
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  m 1    s for the averaging procedure in step 4 becomes very 
 

                       
 

          small So, scales s   N 4 should be excluded from the 
 

Multifractal Detrended Fluctuation Analysis (MF-DFA) fitting procedure for determining h (q ) . Also, systematic 
 

MF-DFA was proposed by Castro e Silva and Moreira 
deviations from the scaling behavior occur for very small 

 

scales, s    20 − 30  and so we ignore small scales too.  

(1997). After that, It was modified by Kantelhardt et al. 
 

The Hurst exponent H is given by, H   h (q  2) , where 
 

(2002)  and  represents  a  generalization  of  the  DFA  

              
 

approach that has been used for the analysis of various h (q ) is the generalized Hurst exponent obtained from 
 

types of stochastic series in science and engineering, 
step  5. If h (q ) varies with q, the series shows  

such  as  climate  change,  and  finance  and  economic  

multifractality, whereas a constant h (q ) is a characteristic 
 

activities, heart rate dynamics, DNA sequences, human 
 

gait and neuron spiking and seismic data (Telesca et al., of monofractal system.       
 

2004, Shadkhoo and Jafari, 2009, Manshour et al., 2009;  For the positive value of q, h (q ) describes the scaling 
 

2010) and so  forth.  The multifractal  DFA  (MF-DFA) behavior of the segment with large fluctuations and for the  

procedure consists of five steps (Kantelhardt et al., 2002). 
 

negative values of q, h (q )  describes the scaling behavior  

Three first steps are essentially  identical  to the  

 

of the segments with small fluctuations. Usually the large 
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conventional DFA procedure. Let us assume that ( x i fluctuations are characterized by a smaller scaling  
a series of length N, the steps are as follows: 

  

 exponent h (q ) for multifractal series than the  small  

Step1: determining the profile Y  ( j ) by integrating the 
 

fluctuations. For stationary  time  series,  the exponent            
 

time series.         h (2)  is identical to the Hurst exponent.    
 

 

i  k            
 

                       
 

   % 
k  1, ..., N 

 
(9) 

              
 

y (k )  ∑[x (i ) − x ]                
 

 i 1         RESULTS AND DISCUSSION      
 

 %              
 

where x  represents the average value.                 
  

Step 2: dividing the profile Y  ( j )  into N s    int( N s ) 
 
non-overlapping segments of equal length s. for 
contributing all the data when N is not a multiple of s, the 
same procedure is repeated starting from the opposite  

end. So, 2N s  segments are obtained. 
 

Step 3: Calculating the local trend for any 2N s  segments 
 
by m degree least square fit of the profile and then 
determining the variance for each segment. 

  
MF-DFA that was performed on well logs from the well 
Farour-A1 belongs to Farour-A offshore oilfield and the 
well Farour-B2 belongs to Farour-B offshore oilfield. 

Hurst exponents h (q  2)  of Farour-A1 and Farour- 
 
B2 well logs are shown on Fig. 3 and Fig. 4. Hurst 
exponents for all well logs from these two wells are 
greater than 0.5 and represent positive correlation and 
persistent time series. These results disaccord to Ferreira 
et al (2009) on Namorado sandstone field (an offshore 



  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Fig. 3. Generalized Hurst exponent for neutron porosity, acoustic impedance, bulk density and sonic 
transmit time logs in Farour-A1.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Fig. 4. Generalized Hurst exponent for neutron porosity, acoustic impedance, bulk density and sonic transmit 
time logs in Farour-B2. 



 
 
 

 

Brazilian oil field) with negative correlation. This behavior 
is due to the different depositional environment. While 
Namorado sandstone field is formed by the coalescence 
of channels and lobes deposits on the irregular 
depositional surface with elongate, dome shape, partially 
faulted structure duo to salt flow activity in the late 
Cretaceous era (Bacoccoli, 1980) and Farour fields is 
formed by interbedded carbonates, sandstone and shale 
with a poor matrix porosity and permeability. In spite of 
poor primary reservoir maturity, these reservoirs have the 
extensive production rate due to tectonic activity (Hull, 
1970, Bacoccoli, 1980).  

Generalized Hurst exponent h(q) for Farour-A1 and 
Farour-B2 well logs in original, shuffled and surrogated 
forms are respectively shown in Fig. 3 and Fig. 4. 
Generalized Hurst exponents of the surrogated series have 
no monofractal behavior and are not independent on q. So, 
multifractality nature of the series is not just due to Non-
Gaussian PDFs of the data and their long tails (type I). 
Generalized Hurst exponents of the shuffled series have no 
monofractal behavior and are not independent on q. So, the 
correlation is not destroyed and multifractality nature of the 
series is not just due to the different long-term correlations of 
the small and large fluctuations (type II). Generalized Hurst 
exponents of the shuffled and surrogated series have 
weaker multifractality than the original series. So, 
multifractality is caused by both factors of Non-Gaussian 
PDFs and different long-term correlations of the small and 
large fluctuations (type III). This behavior is related to 
physical properties of the earth in which, depositional 
environment over the time scale increases the long-term 
correlation and strong heterogeneity causes broad 
probability distribution. So, different layers have different 
power law exponent. 
 

 

CONCLUSION 

 

Multifractal Detrended Fluctuation Analysis (MF-DFA) is a 
good procedure to study multifractality nature of the well 
logging data by considering original, shuffled and 
surrogated series. MF-DFA examined on four types of 
well logging data belong to two different wells with 
different geological time scale. These analyses showed 
that Hurst exponents were greater than 0.5 and exhibited 
persistence in the long-term correlation of these data. 
And also, multifractality nature of them was due to the 
long-term correlation and broad probability distribution 
due to physical properties of the ground in which, 
depositional environment over the time scale rises in 
long-term correlation and strong heterogeneity gives 
broad probability distribution. 
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