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Hall effects on the steady hydromagnetic flow due to non-coaxial rotations of a porous disk and a fluid 
at infinity with slip condition at the boundary has been studied. An exact solution of the governing 
equations has been obtained. The combined effects of Hall current, slip condition and suction or 
blowing are examined. It is found that both the primary velocity and the secondary velocity decrease 
with increase in Hall parameter. The heat transfer characteristic has also been studied on taking 
viscous and Joule dissipation into account. It is found that the critical Eckert number for which there is 
no flow of heat either from the disk to the fluid or from the fluid to the disk increases with increase in 
either Hall parameter or slip parameter. 
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INTRODUCTION 
 
In an ionized gas where the density is low and the 
magnetic field is very strong, the conductivity will be a 
tensor. The conductivity normal to the magnetic field is 
reduced due to the free spiralling of ions and electrons 
about the magnetic lines of force before suffering 
collisions and a current is induced in a direction normal to 
both magnetic and electric fields. The phenomene well 
known in the literature, is called Hall effects. Due to the 
Hall current, a secondary motion ensues that the part of 
the flow takes place in the direction normal to both 
electric and magnetic fields. The study of 
magnetohydrodynamic flows with Hall currents has 
important engineering applications in the problem of 
magnetohydrodynamic generators and of Hall 
accelerators as well as in the flight magneto-
hydrodynamic. The viscous incompressible flow due to 
non-coaxial rotations of a disk and a fluid at infinity has 
been considered by a number of researcher. Berker 
(1963) studied the viscous incompressive fluid between 
two parallel plates rotating non-coaxially with the same 
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angular velocity. The flow due to a disk and a fluid at 
infinity which are rotating non-coaxially at slightly different 
angular velocities has been studied by Coirier (1972). 
Erdogan (1972, 1973) studied the same problem in the 
case of a porus disk, when the disk and the fluid at 
infinity rotates with the same and slightly different angular 
velocities respectively. The flow of a simple fluid in an 
orthogonal rheometer has been studied by Rajagopal 
(1992). Murthy and Ram (1978) have studied the MHD 
flow and heat transfer due to eccentric rotations of a 
porous disk and a fluid at infinity. Chakrabarti et al. 
(2005) considered the hydromagnetic flow due to a non-
coaxial rotation of a porous disk and the fluid at infinity 
with same angular velocity. Hydromagnetic flow due to 
eccentrically non-conducting rotating porous disk and a 
fluid at infinity have been studied by Guria et al. (2007a). 
In all these studies, the effects of Hall current are 
neglected. Hall accelerations and in flight MHD. Hall 
effects on the viscous incompressible conducting fluid 
under various geometry have been considered by Sato 
(1961), Sherman and Sutton (1965), Pop and 
Soundalgekar (1974), Gupta (1975), Debnath et al. (1979), 
Datta and Jana (1975, 1977a, 1977b) and Jana et al. 
(1977). Recently, Guria et al. (2007b) have studied the 
Hall effects on the hydromagnetics flow due to non- 
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Figure 1. Geometry of the problem. 

 
 

 
coaxial rotations of a porous disk and a fluid at infinity. 
Hall effects on the MHD flow generated by a rotating disk 
have been analyzed by Maleque and Sattar (2005b). 
Hayat et al. (2008) studied the Hall effects on unsteady 
flow due to non-coaxially rotation of a disk and a fluid at 
infinity.  

The aim of the present study is to discuss the combined 
effects of Hall current and the slip condition at the disk on 
the steady conducting viscous incompressible flow due to 
non-coaxial rotations of a porous disk and a fluid at 
infinity. An exact solution of the governing equations has 
been obtained. It is found that the primary velocity 
decreases and the secondary velocity increases with 

increase in either slip-parameter  or suction parameter S 
. The heat transfer characteristic of the problem has also 
been studied on taking viscous and Joule dissipation into 
account. It is found that the rate of heat transfer at the 

disk increases with increase in either Hall parameter m or 

slip-parameter  . The non-  
dimensional force X


 exerted by the fluid on the disk 

decreases with increase in either slip parameter  or  

Hall parameter m . On the other hand, the force Y

 

exerted by the fluid on the disk increases with increase in 
Hall parameter m whereas it decreases with increase in  
slip parameter  . Both the forces X


 and Y


 decrease 

with increase in suction parameter S . 
 
 
METHODS 
 
Mathematical formulation and its solution 
 
Consider steady flow of a viscous incompressible conducting fluid 

occupying the space z > 0 and is bounded by an infinite porous 

 
 
 

 
non-conducting disk at z = 0 . The axes of rotation of the disk and 

that of the fluid at infinity to be in the plane x = 0 . The disk and the  
fluid at infinity rotate about z and z

'
 -axes with the same uniform 

angular velocity  . The distance between the axes of rotation is l . 

A uniform magnetic field B0 is applied perpendicular to the disk. The 

boundary conditions of the problem are:  

u  y   
du

 , v x   
dv

 , w w  at z  0, (1) 
 

dz dz 0  
 

   

 

u ( y l ), v  x, w w0  as  z , (2) 

where u, v, w are respectively the velocity components along x, y  
and z -directions and w0 (> 0) is the suction velocity at the disk 

and  is the coefficient of a sliding friction. 
 

The geometry of the problem (Figure 1) suggests that the 
velocity field in the flow is of the form: 
 

u y  f ( z), v x g ( z), w w0. (3) 
 
The generalized Ohm's law, on taking Hall currents into account 
and neglecting ion-slip and thermo-electric effect (Cowling, 1957) 
 

  e
 ( j B) ( E  q B), 

 
 

j  e  (4) 
 

 B0   
 

where j  is the current density vector, B is the magnetic induction 
 

vector, E is the electric field vector,  is the cyclotron frequency 
 

   e 
 

and e is the collision time of electron.  
  

We shall assume that the magnetic Reynolds number for the flow 
is small so that the induced magnetic field can be neglected. This 
assumption is justified since the magnetic Reynolds number is 
generally very small for the partially ionized gases. Assuming  
B  ( B , B , B ) ,  the  solenoidal  relation .B = 0 gives  B  = 

x y   z   z 

constant = B0 , everywhere in the flow. Further, if j  ( j x , j y , jz )  
be the components of the current density j , then the equation of 

the conservation of the charge  j = 0 gives jz = constant. This 

constant is zero since jz = 0 at the disk which is electrically non-

conducting. Thus jz = 0 everywhere in the flow. Again, for steady  

motion,  the  Maxwell's equation E = 0  gives 
Ex 

 0  and  
z  

      
 

 Ey  0 . This  implies that  E  constant  and E  constant     

   

 z  x  y  
 

      
  

everywhere in the flow. In view of the above assumptions, Equation 
4 gives: 
 

jx mj y ( Ex vB0 ), (5) 

j y mjx ( Ey uB0 ), (6) 
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where m =  

e 
is the Hall parameter. df 

 

e  w
0 dz 


 

g
 

 

At infinity, the magnetic field is uniform so that there is no current 
 

and hence, we have 
 

jx 0,  j y  0 as z . (7) 
 

On the use of Equation 7, Equations 5 and 6 yield 
 

Ex B0 x, Ey B0 ( y l), (8) 
 

everywhere in the flow.  
 

Substituting the above values of  Ex  and  Ey in the equations (5) 
 

and (6) and solving for  jx  and  jy , we get:  
 

j 
x    B0  [ g  m(l  f )], (9)  

   

 

1 m
2
 

   
 

     
 

j 
y   B0  [(l  f )  mg]. (10)  

   

  

1 m
2
 
   

 

      
  

Substituting Equation 3 and using Equations 9 and 10, the Navier- 
Stokes equations along x and  y directions become:  

 

   df   1 p 2  d 
2
 f  

 

w   

   

 x      

    

dz
2
 

  

0  dz    x    
 

  B
2
 

(l  f )  mg  g, 

 
 

 

   0  

(11) 

 

(1  m
2
 )  

 

   dg   1 p 2  d 
2
 g  

 

w   

   

 y  
dz

2
 

  

      

0  dz    y    
 

 
 

 
 d 

2
 f  
 

  B0
2
  (l  f )  mg,   

 

dz 
2
 (1  m

2
 ) 

 
 

                
 

 w   dg (l  f )         
 

              

    
0
 dz                 

 

 d 
2
 g    B0

2
  
 

g m(l  f ) .   

             

   
dz 

2
 
   
(1  m

2
 ) 

          
 

                 
 

Introducing                 
 

        
B0

2
 
  

w0 
  

 

    


 z, M 
2
   , S     

 

            

                    
 

and combining Equations 17 and 18, we have 
 

 d 
2
 F       dF   M 

2
      mM 

2
   

 

      S           i 1        F  0,  

  

2      

 2 2   

 d        d     
 

           1  m   

 
1 m 

 
 

 

                          
  

where 

F() 1  
f
 


 
g

 .  
l 

 
The corresponding boundary conditions for  F( ) are  

F (0) 1  
dF(0)

  and  F()  0, 

d 

 
(17) 
 
 
 
 
 
 

 
(18) 
 
 
 
 
 
(19) 
 
 
 
 
 
(20) 
 
 
 
 
 
(21) 
 
 
 
 

 
(22) 

 B
2
  

g m(l  f )  f . 

 

0   

 

  

(1 m
2
 ) 

 

The boundary conditions for f ( ) and  g() are 
 

f (0)   df (0) , g(0)   dg(0) ,  

   

  dz dz 
 

 
f () l ,  g()  0. 

 

(12) where  is a slip parameter.  
 

The solution of Equation 20 subject to the boundary conditions (22) 
is  

 
      S      

 

  exp          i     

  

     

    

    

2 
     

 

(13) F()          , (23)   

1  
 S 

 i 
 

 
 

     
 

  

    

     

  

2 
   

 

(14)            
 

                

 
On the use of infinity condition (14) (Erdogan, 1977), Equations 11 
and 12 yield 
 

0  
1 p 


2
 x, (15) 

 

   

 x  

   
 

 

0  
1 p 


2
 y. 

 
 

  

(16) 
 

 y  

   
 

Using Equations  15 and  16,  Equations  11  and  12  become 
 

 
where 
 
                           1 

 

                
2  2  

  2  2 
2  

                   

     1        2   4M    mM     

,       
S      

16 1      

     

 
    

 
    

 
 

  

 

     

1  m
2
 

 

1 m
2
 

  

        

   2  2          
 

                             
                           

                           

                            
 

             1               
 

  
S

2
 
   

4M 2 
  2               

 

  
    

. 
             

 

 
   

 
             

(24) 
 

1 m
2
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Figure 2. Variations of 
f     

and 
g 

for S 1, m  0.5 and   0.05 .             
 

               

l 
   

l 
            

 

   
 

Using Equation  21  and on separating into a real and imaginary RESULTS AND DISCUSSION          
 

parts, Equation 21 yields                                 
 

                                            Equations 25 and 26 show that there exists a single-deck 
 

                     
  S                    boundary layer near the disk and the thickness of this                                          

 

 

f 
 

e 
  

 

                    2                            1      
 

        

     1                   

2                 

layer is of the order of  S 
         

 

l 
                                      O      . The thickness of 

 

     

      

S       

                      
2          

                    2 2                        
 

           

1     

   

                          

           

2 
                            

 

                                         this boundary layet decreases with an increase in either 
 

        S                           suction parameter S or magnetic parameter M 
2
 
 

    1         cos    sin   ,   (25) because  , as shown in the Equation (24), decreases            

       

2 
                         

                                  
with  an  increase  in  either suction parameter S or                                              

 

                   S                        magnetic parameter M 
2
 . On  the other hand, the 

 

                                       

boundary layer  thickness increases with an increase in  

                                      

                                            

 g  
          e  2                        

Hall parameter m as  decreses with an increse in Hall 
 

                                      
 

 

l 
      

S 
        2                    

 

  

             

                    

parameter  m . To study the combined effects of Hall    

1 
 

 
  

 
2 
 

2              
 

      

       

                 

current  and  slip  condition  on  the  steady  flow  of  a 
 

      

2 
                  

 

                                        
 

  
 

  
 S 

    
 

               
 

     conducting viscous fluid due to non-coaxial rotation of a 
 

                            
porous  disk  and  a fluid  at infinity,  the  dimensionless      1          sin    cos   .   (26)  

   

       

     

2 
                         

velocity components f / l 
 

and 
 

f / l are plotted 
 

                                   
 

                                                      
 

                                            against  in  Figures  2  to  5 for  several  values  of  Hall 
 

The solutions given by Equations 25 and 26 are valid for both the parameter  m , slip parameter   and suction parameter 
 

suction ( S > 0 ) and the blowing ( S < 0 ) at the disk. If   0 and S .  Figure  2  shows  that  the primary  velocity f / l  
m  0 then the equations (25) and (26) coincide with the Equation 

 

increases while the secondary velocity g / l  decreases  
5  of  Murthy  and  Ram (1978). Further if    0 , S  0  and  

           

M 
2
 .  It  is 

 

 M 
2
  0 , then Equation 21 is reduced to Equation 13 of Erdogan with  an increase of magnetic  parameter 

 

(1976).                                      observed from Figure 3 that the primary velocity f / l 
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Figure 3. Variations of 
f 

and 
g 

for  M 
2
   5 , S 1 and   0.05 .  

l l  

   
 

 
 

 

decreases whereas the secondary velocity g / l 

increases with an increase of Hall parameter m . It is 

seen from Figure 4 that the primary velocity f / l 

increases with an increase in slip parameter  . On the 

other hand, the secondary velocity g / l increases near 
 
the disk while it decreases away from the disk with an 
increase in  . Figure 5 reveals that the primary velocity  
f / l increases while the secondary velocity g / l 

decreases with an increase in suction parameter S . The 
components of the force exerted by the fluid on the disk 

along the x - and y -directions are: 

 
    S Pr                             

 

1  e                               
 

            
         

2          
2   

                       
2     M  

            S 
   

       

         

Pr Ec    

        

  

             

1  2  

             2              m  
 

                                  

                                    

                                   

     S     2    
2  2              

 

                           

 
1      

    

    
 
 ( S  2)( S  2  SPr)  

          

    2                           
 

                                 
 

    S 2      S Pr  for S Pr  S  2,   
 

 e      e     

                               
 

()                                  (27)  

                                  

    SPr                             
 

1  e                                

                                    

            
 2          

M 2         
 

                              

      S       2               
 

  

 
PrEc    

 
   

         

        

 

2    

1   2        

                  m        
 

                                    

                                    

       S     2   
2    

2            
 

                            

   

 1       

   

   SPr        

    

2           

                               
 

                                   
 

  e S Pr  for S Pr  S  2            
 

                                   
 

 
 

 

where  denotes the surface of the disk of radius r0 , and 

xz (0) and yz (0) are the shear stresses on the disk given 
 

by:      
 


xz 

 w  u   
 

(0)       
 

  x  z z0  
 

  w  v   
 

yz (0)     
. (28) 

 

  y  
zz0  

 

Using Equations 3 and 28, Equation 27 becomes: 
 

2      2  
 

X = r0  f (0) and Y = r0 g (0),   (29) 
 

where  f  
 
0 and  g 

 
0 
 

are obtained from Equations 25 
 

      
 

and 26.  
In the case of suction at the disk, Equations 27 give, on 

using Equations 23 and 24 
 

X 
  

 X   
 

    1   

        

  2   2 
 l 

 

    

   r0    
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Figure 4. Variations of 
f 

and 
g 

for  M 
2
   5, S 1 and m  0.5 .  

l l  

   
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 5. Variations of 
f 

and 
g 

for  M 
2
   5, m  0.5 and   0.05 .  

l l  
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Figure 6. Variations of  X

 and Y


 for  M 

2
   5, S 1. 
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 2 
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Similarly, in the case of blowing at the disk, the 
corresponding forces are obtained by replacing 
 
S S1 (S1 > 0) in Equation 30. 

 

The numerical results of the non-dimensional forces X

 

and Y

 on the disk (  0) are shown in Figures 6 and 7 

against m for different values of slip parameter  with 

 
 
 
M 

2
   5 and  S 1. It is observed from Figure 6 that the  

dimensionless force X

 decreases with increase in either 

 or m . On the other hand, it is observed that the force  
Y

 increases with increase in m when  is fixed, while 

for fixed values of m , it decreases with increase in  . It  
is seen from Figure 7 that both the forces X


 and Y


 

decrease with increase in suction parameter S . It is well 
known that suction causes reduction in the forces exerted 
by the fluid on the disk. 

The torque exerted by the fluid on the disk is given by 
 

M   [ x yz (0)  y xz (0)] dS. (31)  

 
 

     
 

     
 

Using  Equations  28  and 29  in  Equation  31,  we  get 
 

M   0 . It means that the non-coaxial rotation of the disk   
  

and the fluid at infinity has no influence on the torque. 
 
 
Heat transfer 

 
We shall now determine the fluid temperature distribution 
T and rate of heat transfer for the case of suction at the 
disk. The energy equation can be written for the problem 
under consideration is: 
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 Figure 7. Variations of  X

 and Y


 for M 2  5 and   0.05 .                        
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    dT  d T    dv                            
 

c  

w   

 k  

  

 
 dz 

  

   

 j x  jy , (32) and using 
 
Equations 3, 19, 25  and  26,  Equation  32  

   

dz
2
 

   

 
 

 p  0
  dz  


 dz                                 

 

                                            
                   

become 
                   

                                      
 

where  
c

p is the specific heat at constant pressure, k  is 2    d              
 

  d                 
 

the thermal conductivity of the fluid and the last two terms 
   

 SPr 
 

 

             
 

 d
2
 d              

 

on  the  right  hand  side  of  (32)  represent  the  viscous                        
 

dissipation and the  Joule dissipation respectively. The      
 

     
2 
       

2  
 

 

temperature boundary conditions are:                   2    M  
 

         

PrEc 
 S 

   
      

                       

 
  

 
     

 
 

 

                       2  1  m
2
  

 

                                 
 

                                        

   

                                          

T T   at z 0 and T T as z ,    (33)                     
e( S 2) . (35) 

 

                

2        
 

 w                      
1 

 S 
  

        
 

                          
2


2     
 

                          

2 
               

where T is the constant temperature of the disk and T                     
 

    w                                       
 

is the uniform temperature of the ambient fluid where we                        
 

assume that T  > T .            The corresponding boundary conditions for ( ) are 
 

      w                                    
 

Introducing: 
 

 T T    
2
 l

2
   cp 

 

 
  

, Ec  
    

, Pr  
 

, 
 

T T c 
p 
(T T ) k 

 

 w    w    
 

 
 

(0) 1 and () 0. (36) 

 
(34) The solution of Equation 35 subject to the boundary 

conditions (36) is:  
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If   0 and m  0 , then the above Equation 37 coincides 
with Equations 17 and 18 of Murthy and Ram (1978). The 

non-dimensional rate of heat transfer qw at the disk   0  
is given by: 
 

qw k 
 dT  

 
  k l    d  

. 
 

 

      

           

   

 (38)    dz (T T ) d  

   
 

  
z=0 

  
 =0 

 
 

             w         
 

Equation 37 gives:                  
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 2  
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2  
        

 

                 
 

       

 
 

( S  2) 
  

 

 1   
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Since Tw > T , it follows from Equations 38 and 39 that 

heat will flow from the disk to the fluid if: 
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( S  2)S 
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1 m
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On the other hand, heat will flow from the fluid to the disk 
if: 

 

         
 

 
Table 1. Critical Ekart number 

 
M 

2 
 5.0 and S 1. 

 

 Ec for  
 

         
 

  \ m 0.0 0.5   1.0  1.5 
 

          

 0.00 0.32680 0.32972   0.35278  0.38007 
 

 0.04 0.47393 0.47099   0.48633  0.50789 
 

 0.08 0.64850 0.63908   0.64455  0.65836 
 

 0.12 0.85049 0.83397   0.82743  0.83147 
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It is clear from Equation 39 that there will be no flow of 
heat either from or towards the disk when 
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The values of the critical Eckert number Ec


 are given in 

Table 1. It is observed that the critical Eckert number 

increases with increase in slip parameter  while it first 

decreases (except  = 0 ) reaches a minimum and then 
increases with increase in m . The inequality (41) shows 
that heat may flow from the fluid to the disk even if the 
temperature of the disk is greater than that of the free-

stream temperature Tw > T . The reversal of heat flow  
can be explained on physical ground. It is seen that if 
there is significant viscous dissipation near the disk then 
the temperature of the fluid near the disk may exceed the 
disk temperature. This will cause flow of heat from the 

fluid to the disk even though Tw > T . It is interesting to  
note from Equation 37 that the thermal boundary layer 
has a double deck structure for SPr  S  2 . The  

thickness of these layers are  O 
 1   

and O 
 1    

. 
 

  

   

  

  
 

  SPr     S  2   
 

On the other hand, for SPr = S  2 there is a single-deck  
thermal  boundary  layer  with  thickness  of  order  of 

 

O 
  1    

. It is seen from (22) that the layer with thickness of  

     
 

  S  2      
 

order of O 
   1    

decreases with increase in either S or m .  

    

  

   
 

    S  2    
 

The values of  the rate of heat  transfer  
 d  

are 
 

  
 

    
d
0  

 

given in Table 2 for different values of  and m .  It is 
 

209          Int. Res. J. Mech. Eng. 



Atal et al.       210 
 
 

 
 

Table  2. Rate  of  heat transfer  10 
 d  

for Pr = 0.025 ,  

   
 

    
d
0   

 

 M 
2
   5, S 1 and Ec  0.3.     

 

        
 

 λ/m 0.0 0.5  1.0  1.5 
 

 0.00 0.00205 0.00225  0.00374 0.00527 
 

 0.04 0.00918 0.00908  0.00958 0.01023 
 

 0.08 0.01343 0.01326  0.01336 0.01361 
 

 0.12 0.01618 0.01601  0.01594 0.01598 
 

 
 

 
clear from the Table 2 that the rate of heat transfer at the 

disk increases with increase in slip-parameter  . On the 
other hand, the rate of heat transfer first decreases 

(except  = 0 ) reaches a minimum and then increases 
with increase in m . 

 
 

Conclusion 
 

The effects of both Hall current and slip condition on the 
steady hydromagnetic flow of a viscus incompressible 
conducting fluid due to non-coaxial rotations of a porous 
disk and a fluid at infinity is studied. An exact solution of 
the governing equations has been obtained. It is found 
that both the primary velocity and the secondary velocity 
decrease with increase in Hall parameter. It is also found 
that the primary velocity decreases and the secondary 

velocity increases with increase in either slip-parameter  
or suction parameter S . It is observed that the critical 
Eckert number for which there is no flow of heat either 
from the disk to the fluid or from fluid to the disk increases 
with increase in either Hall parameter m or slip parameter 

 . Further, it is observed that the rate of heat transfer at 

the disk increases with increase in slip-parameter  . It is 
interesting to note that the non-coaxial rotations of a 
porous disk and fluid at infinity has no influence on the 
torque exerted by the fluid on the disk. S . The suction at 
the disk causes reduction in the forces exerted by the 
fluid on the disk. 
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